KLASIFIKASI JAMUR KONSUMSI MENGGUNAKAN RANDOM FOREST DENGAN FITUR HUE, SATURATION, VALUE (HSV) DAN HISTOGRAM OF ORIENTED GRADIENT (HOG)
Keywords:
hue saturation value (HSV), histogram of oriented gradients (HOG), jamur konsumsi, klasifikasi citra, random forest.Abstract
Mushrooms have a variety of shapes, sizes, and colors that make them important in the food and health sectors. Five types of edible mushrooms are commonly found, namely button mushrooms, straw mushrooms, shimeji mushrooms, enoki mushrooms, and shiitake mushrooms, which have high nutritional and economic value. However, the visual similarities between mushroom types complicate the manual identification process, which requires special expertise and is prone to errors. To overcome this, this study proposes a classification model for edible mushrooms using the Random Forest algorithm with a combination of Hue, Saturation, Value (HSV) color feature extraction and the Histogram of Oriented Gradients (HOG) shape. The dataset consists of 500 mushroom images from primary and secondary sources that are processed through augmentation, resizing, color conversion, and feature merging. The model is trained with three data sharing schemes (80:20, 70:30, and 60:40) and optimized using GridSearchCV. Evaluation based on accuracy, precision, recall, and F1-score shows that the 80:20 scheme produces the best performance with an accuracy of 97%. The optimal model was then implemented in a Python-based Graphical User Interface (GUI) capable of identifying fungal species quickly, accurately, and easily. This research contributes to the development of an efficient and reliable digital image-based fungal classification system.
Downloads
References
[1] SRI RAHMADHANI, U., & LYSBETTI MARPAUNG, N., 2023. Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN. 8(2). https://doi.org/10.30591/jpit.v8i2.5229
[2] HAYAMI, R., SONI, & GUNAWAN, I., 2022. Klasifikasi Jamur Menggunakan Algoritma Naïve Bayes. Jurnal CoSciTech (Computer Science and Information Technology), 3(1), 28–33. https://doi.org/10.37859/coscitech.v3i1.3685
[3] ARMIADY, D., 2024. Klasifikasi Jenis Jamur Berdasarkan Citra Gambar Menggunakan Algoritma Stochastic Gradient Descent. Data Sciences Indonesia (DSI), 4(2), 1–9. https://doi.org/10.47709/dsi.v4i2.5014
[4] YOHANNES, Y., UDJULAWA, D., & IVAN SARIYO, T., 2021. Klasifikasi Jenis Jamur Menggunakan SVM dengan Fitur HSV dan HOG . PETIR, 15(1), 113–120. https://doi.org/10.33322/petir.v15i1.1101
[5] HEMA, D., & KANNAN, S., 2020. Interactive Color Image Segmentation using HSV Color Space. Article in Science & Technology Journal, 7, 1. https://doi.org/10.22232/stj.2019.07.01.05
[6] LEIDIYANA, H., & WARTA, J., 2022. Implementasi Metode SVM untuk Klasifikasi Bunga dengan Ekstraksi Fitur Histogram of Gradient (HOG). Journal of Information and Information Security (JIFORTY), 3(1),
89. http://ejurnal.ubharajaya.ac.id/index.php/jiforty
[7] MOHANA, R. M., REDDY, C. K. K., ANISHA, P. R., & MURTHY, B. V. R., 2021. WITHDRAWN: Random
Forest algorithms for the classification of tree-based ensemble. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.788
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Computer Science Cendikia (JCSC)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










